INTERIOR POINT METHODS FOR OPTIMAL CONTROL OF
DISCRETE-TIME SYSTEMS
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Abstract. We show that recently developed interior point methods for quadratic programming and
linear complementarity problems can be put to use in solving discrete-time optimal control problems, with
general pointwise constraints on states and controls. We describe interior point algorithms for a discrete time
linear-quadratic regulator problem with mixed state/control constraints, and show how it can be efficiently
incorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The key
to the efficiency of the interior-point method is the narrow-banded structure of the coefficient matrix which
is factorized at each iteration.
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1. Introduction. The problem of optimal control of an initial value ordinary differen-
tial equation, with Bolza objectives and mixed constraints, is

HmléTL@@%u@%ﬂdt+¢ﬂxuU%

U

(1.1) #(t) = fla(t),ult),t), 2(0) = Tin,
gla(t),u(t),t) <0, 1<[0,7],  gs(=(T)) < 0.

Hote o+ 0.7 — ™, s [0.7] = I L+ B x B % 0.7] = . 6; - B — It
g:IR" x IR" x [0,T] — IR", g; : IR™ — IR". A discrete-time counterpart is the problem

N
minz Li(l'ia Uz) + ¢N(xN+1)7

iyt =1
(1.2) ziy1 = fi(e,ug), e=1,---,N, xq fixed,
gz(xzauz)gov izlv"'va gf($N+1)§0-

Efficient algorithms have been proposed for various special classes of these problems.
In the “unconstrained” case (that is, when ¢, ¢; and ¢; are absent), Newton-like methods
and conjugate gradient methods for (1.1) are described by Polak [27]; for (1.2), Newton’s
method, and its efficient implementation, is discussed in Dunn and Bertsekas [8]. A variety
of quasi-Newton approaches have also been applied to the unconstrained version of (1.1); see,
for example, Edge and Powers [9] and Kelley and Sachs [16], and the references therein. In
the control-constrained case (in which g is absent, and the states @ and x; do not appear in ¢
and g¢;), the problem is traditionally treated as a constrained optimization problem in u or u;.
Because of the “pointwise” or separable nature of the constraints, methods of the gradient
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projection class are easily implementable (see, for example, Demyanov and Rubinov [3],
Dunn [5, 6]). In the finite-dimensional problem, these methods have the advantage that the
set of currently-active constraints can change extensively at each iteration, whereas “active
set” methods only allow a single change to the active set, which causes poor performance
when there are many constraints. More recently, Newtonian scaling has been added to
gradient projection algorithms (see Gafni and Bertsekas [12], Dunn [7]) to improve their
asymptotic rate of convergence, and the resulting methods have proven to be useful for the
control-constrained version of (1.2), as we see in Section 6. Pantoja and Mayne [26] have
described a stagewise algorithm for the control-constrained case that, in a neighborhood of
a solution of (1.2), produces iterates that are identical to sequential quadratic programming
iterates. Instead of making use of the inherent structure in (1.2) at the level of the linear
algebra computations, as we do in this paper and also in [32, 31], Pantoja and Mayne exploit
the structure at a somewhat higher level.

The most general cases of (1.1),(1.2), in which the functions ¢, ¢;, gs are nontrivial
in both states and controls, are known to be significantly more difficult to solve than the
special cases described above. Algorithms based on nonlinear programming techniques ap-
pear to be the most promising. In these algorithms, both states and controls are treated
as unknowns and the state equation and “auxiliary” constraints as equality and inequality
constraints, respectively. Miele [21] deals mainly with the case in which the auxiliary con-
straints ¢ in (1.1) are equalities (rather than inequalities) and proposes algorithms of the
reduced gradient type, with features added to ensure near-feasibility of all iterates. Polak,
Yang and Mayne [28] describe a first-order algorithm which makes use of barrier functions
for the inequality constraints. Evtushenko [10, Chapter 6] describes a variety of augmented
Lagrangian penalty function methods, in which (1.2) is reduced to an unconstrained prob-
lem. Di Pillo, Grippo and Lampariello [4] describe a structured quasi-Newton method for a
particular augmented Lagrangian, and take advantage of the same feature which we exploit
in this paper: bandedness of the coefficient matrix which is factored at each iteration.

In this paper, we focus on a linear-quadratic version of the discrete problem (1.2). This
can be formulated as

N
1
minz r;[ui + ZZTJ}Z + 5(:1;;[@2:1;2 + Zx;eriui + u;[SZuZ)

L, Uq

=1
1
+ Z]:GHSI?NH + §$%+1QN+1$N+17
(1.3) v = Ay + Biug + s, 1 =1,--+, N, xq fixed,

Giu + Hiw; < ¢, 2 =1,---, N, Hyiiong < gngr-

Sequential quadratic programming algorithms for the nonlinear problem (1.2) give rise to
subproblems of this form at each iteration. The algorithm that we propose may be less
efficient than other algorithms on special cases of (1.3) (see, for example, comparisons with
a gradient projection algorithm for control-bounded problems in Section 6), but we claim
that it forms the basis of an efficient general solution procedure for (1.3).
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For the continuous problem (1.1), solution of a problem of the form (1.3), or something
similar, remains a “core” operation. In the numerical results of Section 6, we restrict atten-
tion to simple discretizations of the continuous problems. Higher-order discretizations are
possible: for example, Cuthrell and Biegler [2] use collocation at Gauss points to convert
(1.1) to a nonlinear programming problem. Many issues arise in the discretization process,
particularly when the solution of (1.1) contains singular arcs (and so the first-order necessary
conditions give rise to a higher-index differential-algebraic equation). We will not discuss
them further here, except to point out that the general methodology of this paper is applica-
ble whenever discretizations with “local support” are used, since these lead to block-banded
linear systems of the type described in Section 5.

Our main task here is to show that interior point methods may be useful tools for
solving problems of the form (1.3), and that these methods can be embedded in inexact
sequential quadratic programming algorithms to solve problems of the form (1.2). If (1.3)
arises as a discretization of a continuous problem, alternative algorithms from mathematical
programming would seem to be less efficient as NV grows very large. For example, the number
of iterations required by active set methods (see Fletcher [11, Chapter 10]) could reasonably
be expected to be proportional to the number of constraints, that is, O(N). Since each such
iteration involves the solution of a certain narrow-banded linear system of dimension O(N),
the total complexity would probably be (N?). Another possibility is to use algorithms of the
gradient projection class, but these are difficult to implement when both states and controls
are variable, because of the complexity of the feasible set in (1.3). We observe in Section 6
that the number of interior point iterations required to solve (1.3) is often independent of
N and is always better than O(N'/?). Since the main task is each iteration also involves
solution of a linear system with a banded coefficient matrix of dimension O(N), the total
amount of work is between O(N) and O(N®/2) in practice. Other researchers have also noted
that in many cases the iteration count is practically almost independent of N though, as we
show in the next section, formal analyses suggest that it should be O(N'/2).

Interesting algorithms have recently been proposed by Rockafellar and co-workers [30, 36]
for extended linear-quadratic programming, a class of problems that includes discrete-time
linear-quadratic optimal control problems. They aim to find the saddle point of a Lagrangian
which, for multistage problems such as (1.3), has the property that it is decomposable with
respect to the primal variables when the dual variables are fixed, and vice versa. In Zhu
and Rockafellar [36], primal-dual steepest descent and conjugate gradient algorithms which
take advantage of this structure are used, and linear convergence results are proved. A
finite termination results is proved for the conjugate gradient algorithm. These algorithms
take advantage of the structure at a higher level than the linear algebra, but the O(N)
complexity per iteration is similar to ours. An interesting question is whether structured
interior point methods of the type discussed in this paper can be efficiently used to solve the
entire extended linear-quadratic programming class.



We assume throughout that a convexity condition holds:

l Qi R ] is positive semidefinite for ¢ = 1,---, V;

(1.4) RT 5,

Q) n11 1s positive semidefinite.

The second-order sufficiency conditions for (1.3) to have an isolated local solution are weaker
than this; however, (1.4) holds in practice for many problems.

The remainder of the paper is laid out as follows. In Section 2, we introduce two classes
of interior point algorithms for convex quadratic programming. These algorithms are de-
scribed with respect to a general formulation of the problem (see (2.1)) rather than the
specific problem (1.3). Convergence theory for these algorithms is described. Section 3 dis-
cusses some of the practical issues that arise in the implementation of these two algorithms,
with reference again to the general formulation (2.1). In Section 4, we discuss an inexact se-
quential quadratic programming algorithm for the general nonlinear programming problem.
The convergence analysis can be derived from existing theory for mixed nonlinear comple-
mentarity problems, and the stopping criterion for each quadratic subproblem is shown to be
easily evaluated. In Section 5, we show how the algorithms described in the preceding three
sections can take special advantage of the structure inherent in the problems (1.2) and (1.3),
by using linear algebra techniques for banded linear systems as described in Wright [33, 32].
Although we do not deal with it in this paper, the whole approach is conducive to parallel
implementation: the task of evaluating of the functions and gradients in (1.2) can clearly be
divided between independent processors, while parallel solution of the banded linear system
can be carried out by using the techniques discussed in [33].

In the remainder of the paper, superscripts on vector or matrix quantities represent
iteration numbers, while subscripts are used either to distinguish different components of a
vector, or to distinguish different stages of the optimal control problem, as in (1.3). Sub-
scripts on scalars denote iteration numbers. ||.|| denotes the Euclidean norm, unless otherwise
specified.

2. Interior-point algorithms for convex quadratic programming. In this sec-
tion, we give the general outline of recently developed interior point algorithms for convex
quadratic programming. These algorithms usually also apply to linear complementarity
problems, and in the descriptions which follow we will make use of the connection between
these two classes of problems. It has been a source of some frustration in recent years that
the interior point algorithms with desirable theoretical properties (polynomial complexity,
superlinear convergence) tend to be slow in practice, while little can be proved about the
algorithms that perform exceptionally well. Developments continue to occur at a rapid pace,
and the performance gap is closing.

We will outline two interior point methods, one which has polynomial complexity and
superlinear convergence and one which tends to be faster in practice but which does not
have these nice theoretical properties. Both algorithms can be motivated within a common

4



simple framework, which we describe after stating the problem and discussing the relationship
between the primal and dual formulations.
We assume that the convex quadratic program has the following form:

1
(2.1) min §ZTQZ +ctz, Az =0, Cz <d,

where z € IR", b € IR"™, d € IR™, etc., and () is positive semi-definite. We assume
throughout that (2.1) has an optimal solution (z,v) = (2*, v*), where v is a vector of slacks
for the inequality constraints. The dual of (2.1) is

(2.2) max —%UTQU — blw —dly, Qv+ ATw+Cly+c=0, y > 0.

The relationship between problems (2.1) and (2.2) is outlined in the following proposition
(see, for example, Monteiro and Adler [23, Propositions 2.1-2.3] and Mangasarian [20, Sec-
tion 8.2]):

PRrOPOSITION 2.1.

(i) If (2.1) has an optimal solution (z*,v*), then there exist w* and y* such that
(v,w,y) = (25w, y*) is an optimal solution for (2.2). Conversely, if (2.2) has
an optimal solution, then so does (2.1).

(ii) If (2%, v*) and (v*,w*,y*) are optimal solutions of (2.1) and (2.2), respectively, then
(y*)Tv* = 0. Conversely, if (v*,w*,y*) is a feasible solution of (2.2) such that
z=v*, v =d—Cv* are feasible in (2.1) and (y*)T(d — Cv*) = 0, then (v*,d — Cv*)
and (v, w*,y*) are optimal solutions of (2.1) and (2.2), respectively.

Since we have assumed that a primal solution exists, it follows from this Proposition

that there is a quartet (z, v, w,y) such that

(2.3) Qz+ ATw+CTy+¢=0
(2.4) Azt b=0
(2.5) v=—Cz+d>0
(2.6) y >0,
(2.7) yTy = 0.

If (z,v,w,y) is feasible with respect to the first four of these conditions (2.3)—(2.6), then

y'v=y'(d-Cxz)
=yld — 2T (—c— Qz — ATw)
= de Tl + ZTQZ + ZTc,

which is the difference between the primal and dual objective function values, or duality
gap. Interior point methods maintain feasibility with respect to (2.3)—(2.6) while gradually
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reducing the duality gap to zero. In fact, all (y, v) iterates of these algorithms remain in the
strictly feasible set defined by

Fr =A{(y,v) | (z,v,w,y) satisfies (2.3)—(2.6) for some (z,w), y>0,v>0}.

(This fact justifies the use of the term “interior”.) The progress of the algorithm towards a
solution can be gauged by examining the duality gap v7y itself, or some potential function
constructed from it, for example

m

(2.8) U(y,v) = ppIn( y V) Z n(y;v;),

where p, is a fixed barrier parameter. Besides being elements of F, it is desirable for each
iterate to remain in the vicinity of a “central path” defined by

(2'9) C:{(Vvy)EF-l-|l/iyi:(VTy)/m7 izlv"'vm}'

(Measures of closeness to C will be discussed later.) Maintaining closeness to the central path
helps in retaining the strict interiority property and facilitates the convergence analysis.

In general, each step of the method aims to retain feasibility with respect to (2.3)—(2.6),
while moving closer to the central path and/or reducing the duality gap. The latter two
aims may be satisfied by performing a Newton-like linearization of the equations

Viyi = K, izlv"'vmv
or, more succinctly,
(2.10) MYe = pe,

where M = diag(vy,va, -+, vm), Y = (1,92, ¥m), ¢ = (1, 1,--- )T and p > 0. If we
set y = 0, then we are clearly aiming to satisfy the complementarity condition (2.7) without
regard to the central path, while if we set u = (y*1v*)/m where (v*,y") is the current iterate,
then we are aiming to move closer to the “nearest point” on the central path in some sense
while not reducing the duality gap. As we see below, p is often chosen to lie strictly between
these two extremes, so that it partially satisfies both aims.

We note here that (2.3)-(2.7) is a linear complementarity problem, in which the coeffi-

cient matrix

Q AT CT
—-A 0 0
—-C 0 0

is positive semi-definite. The “linear complementarity” point of view is useful when dis-
cussing convergence of the interior point algorithms, and when describing the choice of an
initial point, as we do in the next section.



The interior point framework can now be specified. Suppose an initial point (z°, 1%, w°, y°)

that satisfies (2.3)—(2.6) with strict inequalities in (2.5)—(2.6) is available. At the current

iterate (2%, V% wk y*), we generate the search direction (62, 81% 6w*, 6y*) by solving the

following system of equations:
Q62" + ATswk + CToy* =0
AbzF =0
(2.11) Coz" +6vF =0
YEsSUE + Mk(Syk = pipe — YFMPe.

Elimination of é1* yields the (symmetric, indefinite) system

Q AT cr 52 0
(2.12) A 0 0 swk | = 0
C 0 —(Yk)_le oy —,uk(Yk)_le + MFe

Now, we set 27! = 25 40,625, v*! = v +0,60F, Wit = wh +0,6w", and y* ! = y*+0,6y",
where 6, is chosen to retain feasibility of the new iterate with respect to (2.3)-(2.6), among
other things.

Potential reduction algorithms choose pj to depend on the duality gap: specifically

(2.13) Uy = &, A Y TR
Pk

where the value of p; will be discussed below. @ is then chosen so that (y* + 0,6y*, v* +
0:6v%) achieves at least certain constant reduction over i (y*,v*), where ¢ is defined in
(2.8). The following result can be used to demonstrate polynomial complexity of the basic
potential reduction algorithm. It is proved by Kojima, Mizuno and Yoshise [17] for the linear
complementarity problem in standard form, but can be easily extended to the “mixed” linear
complementarity problem (2.3)—(2.7).

THEOREM 2.2. Suppose that

(i) The set C is nonempty
(it) pr = pp =m~+/m in (2.8) and (2.13)
(iii) m > 2

(iv)
M=y e /Y FVE

[N (3 = VAT

0, =04

Then the iterates produced by the interior point algorithm satisfy

¢(yk+171/k+1) §¢(ykvyk)_027 k:()vlv



COROLLARY 2.3. Suppose that the assumptions of Theorem 2.2 hold, and let L be any
number with L > —(y°, v°)/\/m. Then the iterates generated by the algorithm will satisfy
Ay, = y*"vk < e for all k > 5[ (y° v0) + /mL].

Proof. The result follows immediately from Theorem 2.2 together with the fact that

Py, v) < —vmL = y'v <e".

[

Polynomial complexity follows if ¢ (y°, v°) = O(y/mL), since the time for each iteration
is polynomial in the problem size. (Strictly speaking, the standard assumption that all data
in the problem (2.1) is rational is also needed.)

The algorithm of Theorem 2.2 can certainly not be expected to yield superlinear con-
vergence, and indeed it is very slow in practice. Other researchers have analyzed algorithms
in which the choices of p,, pr and 8; are relaxed. However, the choices of p; and 0 that
yield the most efficient practical algorithms lie outside the scope of this analysis. We use
the following heuristics (which are similar to those utilized by Han, Pardalos and Ye [13]):

initially: pui, «— m!'?
the k-th iteration:

pr = Max (pmin, 1/Ak);
calculate the step (6z%, 6v%, sw”, 6y*);
set 0, = max{f | 0 <1, y* + 06y >0, vF+060F>0, i=1,---,m},

if 0, < .5 then punimm «— 5 * pmin;
if 0, =1 then puin < 2 * pmin;
if 0, =1 then 0, « 1 else 0, — /0,

Take the step of length 8 and go to next iteration;

Here, the constant 3 is set to .9995.

In our experience, the choice of p; should be manipulated to be as large as possible, while
allowing steplengths 8 of 1, since these steps were usually observed to produce the largest
reductions in the duality gap. The heuristic above was found, after some experimentation, to
be quite successful. As noted by Zhang, Tapia and Dennis [35], the choice py = 1/Aj (which
takes effect during the last few iterations) ensures quadratic convergence of the duality gap
to zero.

The second algorithm we consider is of the “predictor-corrector” type. For linear pro-
gramming problems, this algorithm is described by Mizuno, Todd and Ye [22] and Ye, Tapia
and Zhang [34]. The analysis is extended to linear complementarity problems by Ji, Potra
and Huang [15]. The algorithm makes use of the idea of an “a-neighborhood” of the central



path C, defined as follows:

oo ==}

where o € [0,1). (Note that C = C(0).) It is assumed that the initial point (z°, % w°, y?)
has (y°,1°) € C(1). To complete the definition of the algorithm, we need only specify the
choices for p; and 6y:

(i) For k even, choose up = 0 and 6 to be the largest value in (0, 1] such that

— €

ca)={(n e 7.

1
(y" 4 0,695, V" + 0,60%) € 0(5);

(ii) for k odd, choose py = (y**v*/m) and ), = 1.
Ji, Potra and Huang show that (y*,v*) € C(3) for all even k and (y*, v*) € C(3) for all odd
k. Their main results are summarized in the following theorem:

THEOREM 2.4. ([15, Theorem 3.1 and Corollary 4.2]) For the predictor-corrector algo-
rithm described above,

JAVA 1
<1l—-— k=0,2,4,---.

Ak — 4\/%7 b b b

Suppose that (y*,v*) — (y*,v*) as k — oo, where (z*,v*,w*,y*) is a strictly com-
plementary solution of (2.1), that is, one for which exactly one of y* and v} is zero for
1=1,2,---,m. Then the convergence is two-step superlinear, that is

JAVES

im
k—oo, keven /g

=0.

The two main implementation issues for this algorithm are
e The choice of §; for odd k. We solve the scalar equation

k ENT [,k [T
9(0) = H(M’“ FOSMFY (Y 4+ 06YF)e — (y" + 00y") (" +0607)

m

1 (y* + 06y")" (V8 4 080%)?

2

=0
4 m
by using a safeguarded search in the interval [0, 1] with an algorithm that has local
third-order convergence. Typically about three iterations are required. The cost of
this step is much less than the cost of solving the system (2.12).
e The choice of an initial point which satisfies the centrality condition

(2.14) (y°, %) € C(i).

When no prior information about the starting point is known, the “cold start” device
to be discussed in the next section can be used to choose such a point. In some
9



circumstances, however, a good initial estimate of the solution which does not satisty
(2.14) is available. In this case, we perform only corrector iterations (i.e., setting
1t = (yTv)/m) with a line search, until a point which satisfies (2.14) is encountered.
During this start-up phase, the line search parameter for each step is chosen to
approximately minimize

2

(M* 4+ 05MM)(YF +06Y%)
(5" + 00y")T(vF + 060%) Jm

9(0) = H

while retaining (y + 06y, v + 06v) € F,.

3. Implementation details for interior point algorithms. We now discuss two
implementation issues that arise in both of the interior point method discussed in the previous
section, namely, the choice of an initial point which satisfies (2.3)—(2.6) and the efficient and
stable solution of the linear system (2.12).

In some situations, choice of a feasible initial point is made easier by the form of the
inequality constraints. Perhaps the most common example for problems of the form (1.3) is
one in which the only inequality constraints are bounds on the controls. Controls u; which lie
strictly between their bounds can be chosen, and initial values of the states x; and costates
p; can be obtained by substituting into the state and adjoint equations, respectively. The
slacks v; are completely determined by the choice of u;. The remaining unknowns to be
chosen are the multipliers y* and y! that correspond to the upper and lower bounds on w;,
respectively. By taking the derivative of the Lagrangian for (1.3) with respect to u;, we
obtain the following equation that must be satisfied by y* and y!:

(3.1) Rz + Siui+ri— Blppr +y* —y!l =0, i=1,2,---,N.

Since, for centrality, it is also desirable to have the products v#y* and vly! as close as possible
to each other for : = 1,2,---,m, we choose some “target” value A for these products, and
then pick y* and y! that satisfy the simple optimization problem

vyt = AP vy — Al
_I_

mml w i ’
Yyl v; v
A A ) .
U2 o W2 o M satisfy (3.1).

Although this heuristic often produces near-central points, it is sometimes necessary to apply
a few centering steps to obtain a point which satisfies (2.14).

When the choice of a feasible point is not so easy (as is often the case when both control
and state constraints are present) the problem can be artificially augmented by one extra v
and y component, in such a way that a feasible choice can be made trivially. Monteiro and
Adler [23] and Kojima, Mizuno and Yoshise [18] show how to construct feasible initial points
that are on or near the central path by introducing artificial variables into convex quadratic
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programs and linear complementarity problems, respectively. Here, we describe a scheme
for choosing a near-central point which is tailored to the form of (2.3)—(2.6). A modification
of this scheme is useful when a good initial estimate of the solution is available; we describe
this also.

We introduce a (large, positive) number L € IR, whose actual magnitude will be dis-

cussed below. Using L, define the quantities

e=(1,1---,1)T,
1 L
a; = —Z [c—l— WCT€‘| 5
b
ay = ——=,
T
ST 1 1
!
m m

and consider the following augmented version of (2.3)—(2.7):

(3.2) QZ—I—ATw—I—CTy—I—alg)—I—c = 0,
(3.3) —Az4ay+b = 0,
(3.4) v=—-Cz+ey+d > 0,
(3.5) p=—alz—alw—-eTy4+¢ > 0,
(3.6) y >0,

(3.7) >0,

(3.8) ylv+g0 = 0.

A little computation shows that the following point is feasible with respect to all but
the last (complementarity) condition:

Le

_ _F A0 _
_m27 y _L7 V=

L

=0, wW=0, LX="Le+d, y° >

m
This point can be placed arbitrarily close to the central path by a sufficiently large choice of
L, since

ono L? * L ,

g0 = o yv) = W—I_ Wd“ fore=1,---,m.

By viewing (3.2)—(3.8) as a linear complementarity problem, we now show that the

solutions of this augmented problem correspond to solutions of (2.3)—(2.7), for L sufficiently
large. (3.2)—(3.8) can be stated as the mixed linear complementarity problem

My My $1 o) 0 .
: _ - N _
3 l —M{, Ma ] l ] + l ] l £ ] , 8220, 1220, s3t2 =0,

52 L)
11



where

i) gl i) o[22 2]

MIIZ[_Q A]v MIQZlCT al]v M22:l 0 e]-

0 a9 —eT 0

Clearly, My; and My, are positive semi-definite. The following Lemma shows that any two
solution triples for (3.9) must be complementary:
LEMMA 3.1. Let (s3,85,135) and (s, s9,t2) be solutions of (3.9). Then s31ty = sit; = 0.
Proof.

(52— 53)" (t2 — 13) = (52— )" [~ M{5(51 — 57) + Maa(s2 — 53)]
)T Moz (52 — s3)7 — (51— s7)T Mia(s2 — s3)
T

) Maa(sy — 53)" + (51— 1) Mua(s1 — s7).

= (52 — 53
%
= (52— 3
: Ty o oxTyx __
Now, since syty = 55715 =0,

0= S;Ttg + Sgtg + (82 — S;)TMQQ(SQ —s5) + (81 — ST)TMH(Sl — 87).

Each quantity on the right-hand side is non-negative, so the result follows. [
It remains to specify the required magnitude of L. This is made precise in the following
result:
THEOREM 3.2. Suppose that (2.1) has an optimal solution (z*,v*), with corresponding
dual vectors (w*,y*). Suppose further that L is chosen large enough that

(3.10) c > aipz* + agw* + eTy*.
Then
(3.11) =z w=w", y=y*, v=v"

P =¢—(al +alw + Ty >0, 97 =0,

is a solution of the augmented problem (3.2)—(3.6).

Let z, w, y, v, 4§, U satisfy (3.2)-(3.6). Then § =0, and hence (z,v,w,y) is a solution
of (2.1),(2.2).

Proof. The first statement is easily verified by substituting in the conditions (3.2)—(3.8).
To prove the second statement, we use Lemma 3.1. Since the vectors (v*, ") constructed
in the first part of the theorem must be complementary to the pair (y,9) which is assumed
to exist in the second part (that is, yTv* + §0* = 0), we have that § = 0. It follows that
(z,v,w,y) satisfies the conditions (2.3)-(2.7) and, therefore, is a solution of (2.1),(2.2). =

In our implementation of the predictor-corrector algorithm, we start by setting L =
1000v/n + m. + m||d||. If after a number of iterations we still have 7 < g, then L is multiplied
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by 10, and the process is repeated. For the primal-dual algorithm, we do not place too much
emphasis on starting close to the central path. We start by setting L = max(1, ||d]|) and,
if 7 < g after a few iterations, then ¢ is increased (as suggested by Theorem 3.2) and the
problem is re-initialized.

When good initial guesses of the solution of (2.1),(2.2) are available , we can modify the
strategy above to take advantage of the available information. This situation can arise when
the linear-quadratic problem arises as a subproblem in the sequential quadratic programming
algorithm for nonlinear programming. It can also arise in a multilevel method, where the
result of solving the problem on a coarse grid is being used as a starting point for a finer
grid.

Suppose that the initial guess (Z,7,w,y) has v > 0,y > 0 and d — Cz > 0, and that

c+Qz+ AT+ CTy~0
b— Az~ 0
d—Cz—v=0.

Choosing some threshold criterion e with 0 < ef < 1, we define a vector e € IR™ such that

_ 1 if0<]j¢§6Ll7i
‘] 0 otherwise.

Then ||e?y]| < er||7|: is also small. Now, choose L > 0 which is similar in magnitude to

llc+Qz + ATw + CngH and ||b— AZ||, and set

1
a = _Z(C +Qz+ Alw + CTy),

1
a, = ——=(b— Az).
)= (- A2
Choose ¢ such that
100 &
P =e—alz—adlw-e"y~ = Uili.
Lm =1

Replacing e by €, we see that the following is a feasible initial point for (3.2)—(3.7):

z =z wozﬂ), yozgj,

Moreover, since



this starting point is not too far from the central path provided that (v,y) is not too far

away.
This “hot start” technique can be modified for the case in which (d — C'z2); is slightly
non-positive for ¢ = 1,---,m (a situation which arises frequently in practice). When this

occurs, €; is usually zero; our strategy is to replace this zero value with a positive value,
chosen so that
I /
(d+Cz+ Le); = —
m
Finally, we turn to two of the issues that arise in the solution of the linear system (2.12).
When the interior point techniques described thus far are applied to the problem (1.3),
the variables and equations can be ordered so that the matrix in (2.12) has a banded struc-
ture, and hence the system (2.12) can be solved in O(N(n;s + n.)?) operations. However, if
augmentation of the problem is necessary as in (3.3)—(3.8), the banded structure is destroyed.
This problem can be overcome by forming and factorizing a Schur complement. Specifically,
a simple row and column reordering of the augmented version of (2.12) yields:

Q AT cT @ 52k 0
A 0 0 —d2 5wk 0

(312) C 0 _(Yk)—le e 5yk - —%(Yk)_le—l-Mke
I L R AR

Y Pk

An elementary argument shows that (3.12) can be solved at the cost of one factorization
of the coefficient matrix in (2.12) (the (1,1) block in (3.12)) and two forward- and back-
substitution with the resulting factors (each involving a different right-hand side), plus a few
vector inner products.

Finally, we turn to the numerical issue of factorizing the matrix in (2.12), given that
some of its diagonals —v¥/y¥ are unbounded as k — oo. This problem can be overcome by
a simple scaling procedure, which we sketch here. Define a diagonal scaling matrix D* by

Df; = min(L,\/yf/vf).

If “strict complementarity” holds (See Theorem 2.4 for the definition) then as k — oo,

r=(d—Cz);, =0 = limgvf/yf =0;
= (d—Cz); >0 = limvf/yF = c0.

K3

Suppose, without loss of generality, that the rows of ' and d can be partitioned such that

Then, D* can be partitioned accordingly as

Dk 0 I 0
ko A _ :
D" = l 0 Dt ] = l 0 Db ] for k sufficiently large.

14



The matrix we actually factorize is then

I Q AT cT I Q AT (Ca)t 0
{ I A 0 0 ” I 5 Cf‘ 8 8 8
k _vky—1 Ak k A
prllc o —vhrm D OO

The latter matrix is then as well-conditioned as the data in the equality-constrained quadratic
program

1
min §ZTQZ + !z, Az=b, Caz=dy
will allow. A similar scaling can be applied to the additional diagonal element in the aug-
mented system (3.12).

4. Inexact Sequential Quadratic Programming. Consider now the general non-
linear programming problem

(4.1) min L(z), h(z) =0, g(z) <0,

where z € IR", h € IR™, g € IR™. We write the Lagrangian for (4.1) as
L(z,w,y) = L(z) + w'h(z) +y"g(2).

If z* is a solution of (4.1), there exist w* and y* such that

aL
(42) S=(=" w0y =0, k(=) =0, g(=7) <0,y 20, (y) g(2") = 0.

These are first-order necessary conditions. Without loss of generality, g(z*) and y* can be

9+(27) vh
9(z") = { go(2") ] , Y= { Y5 ] :

yr

partitioned as

where

g-l—(Z*) = 07 yj— > 07
gO(Z*) = 07 yé = 07
g-(2") <0, y: = 0.

In addition to (4.2), we assume that the following strong second order sufficiency conditions

hold:

dh dg
. T x — T + * —
For all 6, # 0 with 0, dZ(Z ) =0, 0, e (z") =0,
2
(4.3) we have &7 l%(z*,w*,y*) 0, > 0.

15



We also assume that the linear independence condition

2*) has full row rank

(4.4) dgs T
T

applies. Given (4.2), (4.3) and (4.4), Robinson [29, Theorem 4.1] shows that (z*,w*,y*) is a
regular solution of the mixed nonlinear complementarity problem (NLCP)

dL it det
dz dz v dz y="5
(4.5) h(z) =0,

9(2) <0,y >0,  ylg(z)=0.
(“Regularity” is referred to as “strong regularity” in [29].)

A common variant of the sequential quadratic programming algorithm for (4.1) obtains
a new iterate (z/T1 w/* y/*1) from the current iterate (z7,w’,y’) by solving the quadratic

program
1 , , , , , ,
(4.6) min 553@]52 +68d, AS, = —h(Z), T8 < —g(2),
where
B LY . dL . o drT - dgT
J — J apnd od J — (5 A == J g - 24 AY
Q 822 (Z 7w 7y )7 c dZ (Z )7 dZ (Z )7 C dZ (Z )

Then 27*! is set to 2/ + 8, and w’t! and y’*! are set to the Lagrange multipliers at the
solution of (4.6). The subproblem (4.6) can be restated as a linear complementarity problem

Q8. + (A w + (C7) Ty = —¢
(4.7) — A8, = h(z')
—Ci6. > g()),  y=0, yT(C6. +g())) = 0.

When ()7 is positive semidefinite, (4.6) has the form (2.1) and the coefficient matrix on the
left hand side of (4.7) is positive semidefinite. Pang [25] suggests the following algorithm for
solving (4.5) and hence (4.1):

initially:

choose (z°

,w? y?), set 7 =0

each iteration:

find (6,,w,y) such that

16



| E(29) + S ()’ + 42(2 )y
(1.5) B (60, )] < 0, M) ,
min(y?, —g(z7))

where

Q76 + (A)Tw + (C) Ty + &
(19) 19620 .y) = h(29) + A5, ;
min(y, —Cis, — g(zj))

set (27T w/ Tyt = (2 + 6., w,y);
J—J+1L

Here, 7; is a scalar to be specified below. Note that H’(é,,w,y) = 0 at an exact solution
of (4.6). When @’ is positive semidefinite, we can use the algorithm of Section 2 to obtain
an approximate solution to (4.6), terminating the inner iterations when the criterion (4.8)
is satisfied.
The following convergence result can be obtained by making straightforward modifica-
tions to Theorem 1 of Pang [25]. Its proof is omitted.
THEOREM 4.1. Suppose that (z*,w*,y*) is a solution triple for (4.1), that L, h and g
are twice continuously differentiable in a neighborhood of z* and that conditions (4.2), (4.3)
and (4.4) are satisfied. Then there is a constant n > 0 such that
(i) ifn; <mn forall j, and if the initial point (2°,w°, y°) is sufficiently close to (z*,w*, y*),
then the algorithm (4.8) produces a sequence {(z7,w’,y’)} which converges to (z*,w*, y*).
(it) If, in addition to the assumptions in (i), we have that lim;_..n; = 0, then the
convergence of {(z7,w?,y?)} is superlinear.
(iii) Suppose, in addition to the assumptions in (i), that the second derivatives of L, h
and g satisfy Holder continuity conditions

IV2L(21) — V2L(2)|| < epllzr — 2|,
IV2g:(21) — Vigi(2)|| < ¢llz — 2|7, i=1,---m,
IV2hi(z1) — V2hi(2)|| < enllzr — 227, i=1,---m.,

for all z1, z3 in a neighborhood of z*, where v € (0,1] and cg, ¢, and ¢, are positive
constants. Then if
T+ wd + 22 |
n; =0 h(7) 7
min(y’, —g(=’))
the convergence of {(27,w’,y’)} to (2*,w*,y*) has Q-order (1 + 7).
Remarks.
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1. In Pang [25], only non-mixed NLCP are considered. For mixed NLCP (i.e., those
with equality relations as well as inequalities) the definition of H’ has to be modified
as described above, but the same techniques can be used in the convergence analysis.

2. The value of 5 is specified more precisely in [25]. It depends on the regularity
properties of (4.5) at the point (z*,w*,y*) and the size of the neighborhood in
which the iterates (z7,w’,y’) are constrained to lie.

3. Pang proves a result like Theorem 4.1 (iii) only for the case v = 1. The extension
to v € (0,1] is immediate.

4. A variant of Theorem 4.1 can be proved for the case in which only the initial z is
accurate (i.e., |[2% — 2*|| is small, but [|y® — y*|| and ||w® — w*|| may be large). The
details are tedious, and we will not pursue this option further.

As already noted, we can use the algorithm of Section 2 to solve (4.6), after making the
identifications b = —h(z?), d = —g(2’), Q = @7, ¢ = ¢, etc, and z = §,. The following
Lemma gives an alternative expression for the quantity ||H?(8.,w,y)|| which is needed in
4.8:

LEMMA 4.2. [f the algorithm of Section 2 is used to solve (4.6) with the identifications
described above and if the augmentation (3.2)-(3.8) is used, then at each (inner) iterate
(6% wk y*), we have

k/L ¢+
| H (8%, w*, y¥) k/L)
mm C]5k Z]

Proof. The result follows immediately from (3.2)—(3.4) and the definitions of a1 and ay
if we observe that all iterates of the algorithm of Section 2 are feasible with respect to all
constraints in (3.2)—(3.7). ]

5. Tailoring the algorithm to problems (1.2) and (1.3). We turn now to the
optimal control problem (1.3), and describe the special structure of the system (2.12) for
this problem. We suppose that z; € R*,:=1,---, N4+ 1 and u; € R",¢=1,---,N. For
simplicity of exposition, assume that the number of auxiliary constraints at each stage is fixed
at m. By introducing adjoint variables p;, ¢+ = 2,---, N + 1, which are Lagrange multipliers
for the state equation, and slack vectors v;,2 =1,---, N +1 and Lagrange multiplier vectors
Yy, 0 =1,---, N 41 for the auxiliary constraints, we arrive at a set of optimality conditions
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that correspond to (2.3)—(2.7):

Qivi + Riwi + 2 — Alpir + pi + Hl 'y,
ON41TN+1 + 241 + PNy + H]7§+1yN+1
Rl wi + Siug +ri — Bl piga + Gl

T — A — By

Giui + Hiwi + v;

Hyiizngr + vvs

Vi Z 07

VZ'T?JZ'

(5.1)

= 0, :=2,---,N;
=0, ¢:=1,---,N;
= S, t=1,---,N;
= g, Z:177N’
= YN+1;

0, i=1,---,N+1.

The states and controls z; and wu; correspond to the primal variables z; in Section 2, while
the p; correspond to w. We now order the variables in the system (2.12) as follows:

(5u17 53117 5}727 51;27 5u27 5?127 e ,5UN, 5?JN7 5PN+17 5$N—|—17 5yN—I—1)-

If we order the equations (5.1) similarly, the coefficient matrix in (2.12) has the form:

TS, G BT T
Gy —VE o0
- B 0 0 I
I Q
I
I Q@ R HI —AT
(5.3) rr 5 G B! ,
H G =VF o0
-A;, =B, 0 0 I
I Qina
I
1 QN+1 HJ:\F7+1
L HN-I—I _V]<€7+1_

where V* = diag((vF)1/(y5)1, -+, (¥F)1/(yF)m). This matrix has dimension N(2n, + n. +
m) + m, and bandwidth (2ns; +n.+m — 1), and hence can be factorized in O(N(ns + n. +
m)?) operations. Back- and forward-substitution with the resulting triangular factors takes
O(N(2ns + n. + m)?) operations.

For the nonlinear problem (1.2), application of sequential quadratic programming (SQP)
gives rise to problems of the form (1.3). This is described in Wright [32] for the case in which

auxiliary constraints are absent. The Lagrangian for (1.2) is

N
L(x,u,p,y) = L(x,u,p) + D yf gi(wi,wi) + Y97 (xv41)
=1
19



N
where /J(l’,u,p) = ZLZ(xlvul) + ¢N(xN+1 + sz-l—l Lit1 — f (xlvui))‘

=1 =1
At the current SQP iterate (x,u,p,y), we define

Q'd_efaz_/v‘ def 9*°L defaﬁ
CT 022 Y T dmou; T o

def a/j def a/j def a/:' def
— ;. — S; = g9 = gz(xzauz)

Z; = 5 r, = 5
Ox; Ouy; apz+1
e a 3 e a 7 e a 7 e a 7
id:f f7 Bzdzf f7 sz:f g7 szzf g7
Ox; Ouy; Ox; Ju;

and solve the resulting linear-quadratic problem to obtain the SQP step.

6. Computational results. We present computational results on some problems from
the literature. In each case, the problems are discretizations of continuous-time problems.
An Euler discretization of problem (1.1) can be obtained by dividing the time interval into
N equal intervals, with ¢, = (¢ —1)/N,t=1,---, N+ 1, and finding x; ~ x(¢;) and u; ~ u(t;)
by solving

min _ZL T, Uiyt )+¢f(xN+1)

it =1
Tit1 = X4 + ﬁf(xmumtz)v L1 = Zinit,
g(xmum ) < 0 gf(xN-I—l) < 0.

A solution that is accurate to O(N™') is obtained. A midpoint- or trapezoidal-rule dis-
cretization of (1.1), which is accurate to O(N~?), has the form (1.2) in some circumstances.
We use such a discretization for Example 4 below.

For the inexact SQP algorithm, we use termination criteria that are consistent with

(4.8),(4.9) and Theorem 4.1, that is

. def H
k pu—
=1 axl‘l'l

. 1/2 _
H min(yven, gy ()17} <1070 N2, + 0.+ m)

2

oL
api-l—l

I*

2 2
oL )
H + || min(y;, —gi (@i, ui))

8ui

.

(where all quantities are evaluated at the k-th SQP iterate, and the min(.,.) function applies
componentwise.) If the problem is linear-quadratic, this criterion is used to terminate the
first (and only) SQP iteration. Otherwise, the interior point algorithm that is used to solve
the (k 4 1)-st SQP subproblem is terminated after j iterations if

]\Hj((S:z:i,(Sui,pi,yi)H < mid(emin, €5» Emax)s
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where

Emax = 10_2\/N(2n5 +n.+m) and epn = 10_10\/N(2n5 + n. +m).

Here, [’ is defined as in (4.9) to be a measure of inexactness for the linear-quadratic subprob-
lem. According to Theorem 4.1, quadratic convergence should be observed if this criterion
is used.

We tested both interior point methods discussed in Sections 2 and 3. As discussed earlier,
our implementation of the predictor-corrector method is guaranteed to converge, while our
implementation of the potential reduction method is not. The latter is faster in practice,
however.

Although the motivation for the algorithms described in this paper has been problems
with state constraints and mixed state/control constraints, we first report the results of tests
on two problems in which the only constraints are bounds on the controls. Efficient algo-
rithms for this problem are well known, e.g., the two-metric gradient projection algorithms
of Bertsekas [1] and Dunn [7] and the second-order DDP algorithms of Jacobson and Mayne
[14]. We compare the interior point algorithms with the implementation of the Bertsekas
algorithm described in Wright [32], on three examples from the literature. These are Euler
discretizations of the following three continuous-time problems:

Example 1: (Bertsekas [1]) ns =2, n. =1, m = 2.

min /01 Gu(t)? + 221 (1) + 2o(1)? dt, [ o ] = [ 2 ] ,

X9 —x1 +u

()| < B,  x(0)=15,  2,(0) =5,

where B is a positive constant to be specified below. This is a linear-quadratic problem, and
hence only one SQP iteration is resquired. The optimal control tends to be on its bound for
only a small part of the interval [0, 1].

Example 2: Same as Example 1, but with objective function

1
min / 221 (1) + wo(t)? dt
0

This problem has a bang-bang solution. When B = 1, there is a single switching point from
u(t) = —1 to u(t) = 1 at about ¢t = .512. When B = 2, the switch from u(t) = —2 to
u(t) = 2 occurs at about ¢ = .500.

Example 3: (Jacobson and Mayne [14, Section 2.4.7]) ns =2, n. = 1, m = 2.
e [P
iy RS | T e+ Ly — 140 4w |
ju@) < B, a1(0) =5, 25(0) = =5,
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where, again, B > 0 will be specified later. This problem has nonlinear dynamics, and so
more than one SQP iteration will usually be required.

In each case, the feasible starting point u(¢) = 0 is used, with the other quantities being
chosen according to the discussion in Section 3. Apart from taking advantage of the feasible
initial point and the bandedness, the interior point algorithms did not otherwise exploit the
special structure of the constraints during the factorization of the coefficient matrix (5.2),
though this would have increased the efficiency. We preferred to use the same codes for all
test examples, to demonstrate the versatility of the approach, rather than to customize the
algorithm for each class of problems.

Results for these problems are shown in Tables 6.1-6.3. We make the following obser-
vations:

e The data reported in each table consists of the number of iterations required for
each algorithm, and the amount of CPU time required on a Solbourne 5E/900
workstation. For the interior point algorithms on the nonlinear problems, the num-
ber of SQP iterations (“major iterations”) is reported along with the total number
of interior point iterations (“minor iterations”). For the linear quadratic problems,
only one SQP iteration is needed, so we report just the number of interior point
iterations. Each SQP iteration requires the evaluation of the objective and con-
straint functions and their first and second derivatives. Each interior point iteration
requires the setup and factorization of a matrix of the form (5.2).

o [teration counts for the predictor-corrector algorithm do not include the corrector
iterations which are sometimes necessary when a “hot start” is used. These corrector
iterations are needed to move the initial point closer to the central path, and there
are typically only a few of them.

e for the nonlinear problems, the “hot start” strategy of Section 3 was used on all but
the first major iteration.

o The factor of 4 to 6 performance difference between the potential reduction algorithm
and the predictor-corrector algorithm was typical for all examples that we tried.

o Although the two-metric gradient projection algorithm was clearly fastest for all
examples on which it worked, it frequently failed for certain values of the bound
B. We believe that this is because of near-degeneracy: at the borderline between
regions in which the bound is active and regions in which it is inactive, there are a few
components whose active/inactive status is difficult to determine. In the language
of Section 2, one of y; and v; is zero and the other is very small. This phenomenon
did not appear to affect the performance of the interior point methods.

e no results are given for the two-metric gradient projection algorithm for Example 2.
Our implementation of this algorithm always used exact second derivatives in the
computation of the second-order part of the step. Global convergence is not assured
unless a more complicated strategy is used, and indeed our implementation always
failed to make any progress from the initial point on these examples. (Essentially,
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TABLE 6.1
Results for Example 1 with N = 1000. Second column shows number of active constraints at the solution.
For each of the three algorithms, number of iterations and CPU time wn seconds on a Solbourne workstation
1s reported. When B = 1.4, two-metric gradient projection terminated prematurely after 5 iterations when
B = 1.40 with a near-optimal objective function value.

two-metric GP  potential reduction  predictor-corrector
B | # active iters/time [P /time [P /time
1.00 183 3/1.69 16/12.3 76/59.0
1.25 126 4/2.15 16/12.3 72/55.8
1.40 94 17/13.0 74/58.7
TABLE 6.2

Results for Example 2 with N = 1000. Problem has a bang-bang solution.

potential reduction  predictor-corrector
B [P /time [P /time
1.0 15/11.7 74/58.6
2.0 13/11.5 72/57.7

for bang-bang problems, the two-metric gradient projection algorithm should reduce
to a first-order gradient projection algorithm.)
We turn now to some examples with state and mixed control/state inequality constraints,
for which the interior point algorithms were specifically devised. We report results for the
following two linear-quadratic examples:

Example 4: n, =4, n. = 1.

4
min Y _ 27 (4.2),

=1

21 = —0.521 + Dy
T9 = —bx; — 0.529 +u
23 = —0.623 + 1024
24 = —10x3 — 0.624 + u
z;(0) = 10, v=1,...,4,

()] <1, w42 <1, i=1,....4

9o ey

Versions of this problem have been discussed by a number of authors, including Jacobson and
Mayne [14, page 85] (who exclude the terminal inequality constraints) and Longsdon [19].
The problem has a bang-bang solution with eight switching times. It is solved in [19] by using
a discrete nonlinear programming formulation, and in [14] by using a second-order method
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TABLE 6.3
Results for FEzample 3 with N = 1000. Number of active constraints at the solution is reported in the
second column. For the interior point algorithms, the number of SQP (major) iterations, number of interior
point (minor) iterations, and CPU time on a Solbourne workstation is reported. The two-metric gradient
projections algorithm terminates with the objective function at 115% of its final value when B = 1.0, and
with objective function at 107% of its final value when B = 0.5

two-metric GP  potential reduction  predictor-corrector
B | # active iters/time SQP/IP /time SQP/IP /time
1.0 408 fails 6/20/18.5 7/144/135.
0.5 640 fails 5/22/18.8 6/146/127.
2.0 218 7/3.68 7/20/18.1 8/116/116.
TABLE 6.4

Results for Example | with different values of the discretization parameter N. Runge-Kutta integration
with the final u(t) was used to obtain the final function value. CPU times are in seconds on a Cray Y-MP.

potential reduction  predictor-corrector
N final f [P /time [P /time
500  1.00423296 15/3.54 80/18.5
2500 1.00357374 17/20.3 110/127.

for problems with control bounds and bang-bang solutions. We discretize the problem by
approximating the ODEs by a midpoint rule.

Example 5: Same objective function, dynamics and initial conditions as Example 1, but
with constraints:

u(t) <0.2, Bu(t) + 2x2(t) < 4.

Results are shown in Tables 6.4 and 6.6. The computations for Example 4 were per-
formed on a Cray Y-MP, which was observed in our experiments to be only about six times
faster than the Solbourne workstation. The final function value of f = 1.00357374 obtained
for the larger version of Example 4 compares with a final value of f = 1.00347 obtained
by Longsdon [19], who required over 6 hours of CPU time on a VAX 6320 to compute his
solution. A comparison of the two solutions appears in Table 6.5. For Example 5, the CPU
time required for the potential reduction algorithm is observed to be very nearly proportional
to N, while the slow growth in the number of iterations in the predictor-corrector algorithm
produces a slightly greater observed complexity. Table 6.7 shows that the number of active
constraints at the solution is also O(N), as we would expect.

Finally, we describe experience with two nonlinear problems. These are

Example 6: Van der Pol problem, with state constraint. ny; = 2, n. = 1.

min /05 21(t)? + 2a(1)? + u(t)? dt, [ o1 ] = [ (1 —az)er — e tu ,

T2 1
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TABLE 6.5
Comparison of control profiles for computed solutions of Example 4.

Longsdon [19] Interior Point, N = 2500

(f =1.00347) (f =1.00357374)
Switching time u | Switching time u
0.0 -1.0 1 0.0 -1.0
0.11198 1.0 | 0.1100 1.0
0.89979 -1.0 | 0.8980 -1.0
1.36428 1.0 | 1.3650 1.0
2.16960 -1.0 | 2.1680 -1.0
2.62063 1.0 | 2.6200 1.0
3.43619 -1.0 | 3.4356 -1.0
3.87530 1.0 | 3.8774 1.0

TABLE 6.6

Results for Fxample 5 with different values of the discretization parameter N. CPU times are in seconds
on a Solbourne workstation.

potential reduction  predictor-corrector
N [P /time [P /time
100 20/2.29 108/11.2
1000 20/23.1 172/192.
10000 19/221. 328/3693.
TABLE 6.7

Active constraints for Example &

N 100 1000 10000
active u; = .2 components 18 146 1431

active 3u; + 2z; , = 4 components | 2 21 207
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TABLE 6.8
Results for Fxample 6 with different values of the discretization parameter N. CPU times are in seconds
on a Solbourne workstation.

N # active | SQP iters potential reduction inner iters CPU time
100 42 5 8,11,4,6,2 2.46
1000 415 5 1,6,6,7,7 21.8

10000 4096 4 5,14,16,10 361.
TABLE 6.9

Results for Fxample 7 with different values of the discretization parameter N. CPU times are in seconds
on a Solbourne workstation.

N # active | SQP iters potential reduction inner iters CPU time
100 43 4 8,5,8,1 1.10
1000 428 4 9,8,18 174

10000 4294 3 14,16,28 297.
xq(t) < —0.3, t € [2.5,5], z1(0) = 0, x9(0) = 1.

From the given starting point, the convexity condition (1.4) does not hold at the solution,
but we still observe convergence.

Example 7: (Di Pillo et. al. [4, Example 2]) ny =n. =1, m =1

1

min / z(t)? + u(t)? dt, i =a®—u,
0

x(t) > 0.9, z(1) <1, z(0) = 1.

We show results for SQP with potential reduction inner iterations in Tables 6.8 and 6.9.
In these examples, the computation appears to scale at between O(N) and O(N®/2).

7. Conclusions. We have described the use of interior point techniques in discrete-
time optimal control problems. The computational results we report in Section 6 for the
lienar-quadatic problems appear to be similar in efficiency to those reported by Zhu and
Rockafellar [36], who performed computations with randomly generated examples on similar
workstation equipment.

Our approach bears some similarity to one described by Ohno [24]. Ohno treats the first-
order stationarity conditions for (1.2), and the complementarity conditions yI¢;(w;,u;) = 0
as a system of nonlinear equations, which are then solved by a differential dynamic pro-
gramming method that is similar to Newton’s method. This is similar to performing only
“predictor” iterations in the predictor-corrector algorithm, and we not would expect the
esulting algorithm to be robust. In fact, Ohno observes that his algorithm requires a very
good initial guess in order to converge. Moreover, as discussed above, our algorithm can be
used as the “inner loop” of a more sophisticated algorithm in which approximate first and
second derivatives and global convergence strategies can be employed.
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